Large scale continuous visual event recognition using max-margin Hough transformation framework
نویسندگان
چکیده
In this paper we propose a novel method for continuous visual event recognition (CVER) on a large scale video dataset using max-margin Hough transformation framework. Due to high scalability, diverse real environmental state and wide scene variability direct application of action recognition/detection methods such as spatio-temporal interest point (STIP)-local feature based technique, on the whole dataset is practically infeasible. To address this problem, we apply a motion region extraction technique which is based on motion segmentation and region clustering to identify possible candidate “event of interest” as a preprocessing step. On these candidate regions a STIP detector is applied and local motion features are computed. For activity representation we use generalized Hough transform framework where each feature point casts a weighted vote for possible activity class center. A max-margin frame work is applied to learn the feature codebook weight. For activity detection, peaks in the Hough voting space are taken into account and initial event hypothesis is generated using the spatio-temporal information of the participating STIPs. For event recognition a verification Support Vector Machine is used. An extensive evaluation on benchmark large scale video surveillance dataset (VIRAT) and as well on a small scale benchmark dataset (MSR) shows that the proposed method is applicable on a wide range of continuous visual event recognition applications having extremely challenging conditions.
منابع مشابه
Joint Max Margin and Semantic Features for Continuous Event Detection in Complex Scenes
In this paper the problem of complex event detection in the continuous domain (i.e. events with unknown starting and ending locations) is addressed. Existing event detection methods are limited to features that are extracted from the local spatial or spatio-temporal patches from the videos. However, this makes the model vulnerable to the events with similar concepts e.g. “Open drawer” and “Open...
متن کاملLarge Margin Hidden Markov Models for Automatic Speech Recognition
We study the problem of parameter estimation in continuous density hidden Markov models (CD-HMMs) for automatic speech recognition (ASR). As in support vector machines, we propose a learning algorithm based on the goal of margin maximization. Unlike earlier work on max-margin Markov networks, our approach is specifically geared to the modeling of real-valued observations (such as acoustic featu...
متن کاملOnline learning of large margin hidden Markov models for automatic speech recognition
We study the problem of parameter estimation in continuous density hidden Markov models (CD-HMMs) for automatic speech recognition (ASR). As in support vector machines, we propose a learning algorithm based on the goal of margin maximization. Unlike earlier work on max-margin Markov networks, our approach is specifically geared to the modeling of real-valued observations (such as acoustic featu...
متن کاملLearning to Rank 3D Features
Representation of three dimensional objects using a set of oriented point pair features has been shown to be effective for object recognition and pose estimation. Combined with an efficient voting scheme on a generalized Hough space, existing approaches achieve good recognition accuracy and fast operation. However, the performance of these approaches degrades when the objects are (self-)similar...
متن کاملSequential Max-Margin Event Detectors
Many applications in computer vision (e.g., games, human computer interaction) require a reliable and early detector of visual events. Existing event detection methods rely on one-versus-all or multi-class classifiers that do not scale well to online detection of large number of events. This paper proposes Sequential Max-Margin Event Detectors (SMMED) to efficiently detect an event in the prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 117 شماره
صفحات -
تاریخ انتشار 2013